
Ph.D. QUALIFYING EXAMINATION – PART A 
 

Tuesday, January 15, 2019, 1:00 – 5:00 P.M. 
 
 Work each problem on a separate sheet(s) of paper and put your identifying number on 
each page.  Do not use your name.  Each problem has equal weight.  A table of integrals can be 
used.  Some physical constants and mathematical definitions will be provided if needed. 
 
A1. A solid cylinder of mass M and radius R, rotating with angular speed ω0 about an axis 
through its center, is set on a horizontal surface for which the kinetic friction coefficient is µk. 
Acceleration due to gravity is g. 

(a) Calculate the linear acceleration of the center of mass, and the angular acceleration of rotation 
about the center of mass. 

(b) The cylinder is initially slipping completely. Eventually, the cylinder is rolling without 
slipping. Calculate the distance the cylinder moves before slipping stops. 

(c) Calculate the work done by the friction force on the cylinder as it moves from where it was 
set down to where it begins to roll without slipping. 

Note: the cylinder has rotational inertia  21
2cmI MR .  

A2.  A sphere of homogenous linear dielectric material is placed in an otherwise uniform electric 
field, which at large distances from the sphere is directed along the z axis and has magnitude 0E .  

The dielectric sphere has a radius R and a dielectric constant 0   , where  is the 

permittivity of the sphere and 0  is the permittivity of free space. 

a)  Determine the electric potential both inside and outside the dielectric sphere. 

b)  Determine the electric field inside the dielectric sphere in terms of   and 0E . 

c)  Determine the polarization P


 of the dielectric sphere in terms of  0 ,   and 0E . 

d)  Determine the polarization-surface-charge density  . 

Recall the general solution to Laplace’s equation in spherical coordinates if there is no   
dependence is given by 
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A3. (a) Starting with Newton’s second law, compute the work required to accelerate a particle of 
mass ݉ from rest to a relativistic (comparable to speed of light ܿ) speed ݒ. Remember to use the 
relativistic expression for momentum in Newton’s second law. 

(b) The work found in part (a) is the relativistic kinetic energy ܭ. Show that the total energy of 
the particle (ܧ ൌ ݉ܿଶ ൅   :and the momentum, satisfy the following equation (ܭ

ܧ ൌ ඥ݉ଶܿସ ൅  .ଶܿଶ݌

 

A4.  A particle of charge ݁ and mass ݉ moving in one-dimension is subjected to a spatially 
uniform electric field of magnitude ₀ܧ directed along the positive ݔ-axis (i.e., the axis along 
which the particle moves). Let |ߝ〉 denote an energy eigenstate of the particle in the presence of 
the electric field, so that |ܪ	ߝ〉 ൌ  .〈ߝ|ߝ

a. Write down the eigenvalue equation obeyed by the energy eigenfunctions ߮ఌሺݔሻ in the real-
space or position representation. 

b. Write down the eigenvalue equation obeyed by the energy eigenfunctions ߮ఌሺ݇ሻ or  ߮ఌሺ݌ሻ in 
the wavevector or momentum-space representation (݌ ൌ ԰݇). 

c. Solve the energy eigenvalue equation of the last part to obtain, up to a normalization constant, 
the energy eigenfunctions ߮ఌሺ݇ሻ or  ߮ఌሺ݌ሻ in the momentum-space or wavevector 
representation. For what energies ߝ are your solutions acceptable? What is the degeneracy of 
each energy eigenvalue ߝ? 

d.  By considering the Fourier transform, show that the real-space eigenfunctions ߮ఌሺݔሻ at 
different energies are related to one another through a simple spatial shift, i.e., there exists for 
each ߝ a constant ℓఌ having units of length such that ߮ఌሺݔሻ ൌ ߮ఌୀ଴ሺݔ െ ℓఌሻ. 

 

 

A5.  Statistical Mechanics: Gas of charged particles 

A cubic box of linear size L (with one edge oriented along 
the x-axis) contains N classical particles of charge +e as 
well as N classical particles of charge –e. The box is in an 
electric field E directed in the positive x direction. The 
particles are in thermal equilibrium at temperature T. 
(Neglect the Coulomb interaction between the particles!) 

a) Determine the (thermal average of the) total 
electric dipole moment of the system as a function 
of temperature and electric field.  

b) Discuss the limits of high and low temperatures 
(kBT >> ELe or kBT << ELe) 
 

 



A6.  In the following problem you may ignore the Coulomb interaction and work in the z-basis. 

Suppose a positron and electron interact and form a spin singlet state such that the wave function 

is 

  1
(0)

2
        at time 0t  .  

If their separation is large we can ignore the spin-spin interaction. If the pair is in a static 

magnetic field 0 ˆB B z


, then the Hamiltonian is given by 0 1 2
ˆ ˆˆ ( )z zH S S  , where 0  is related 

to 0B .  

(a)  If the elements in the z-basis are ordered as , , , ,         find the matrix 

representing the Hamiltonian in the z-basis?  

(b)  Determine the matrix representing the time-evolution operator in the z-basis and find the 

wave function ( )t  as a function of time.  

(c)  Does the magnetic field cause mixing of the singlet and triplet states? If so which ones, 

and show them explicitly.  

(d)  Calculate the probability that at time t a measurement of the spin states S1y and S2y will 

yield    for both particles.  

 

 

 

 

 

 

 

 

  



Ph.D. QUALIFYING EXAMINATION – PART B 
 

Wednesday, January 16, 2019, 1:00 – 5:00 P.M. 
 
 Work each problem on a separate sheet(s) of paper and put your identifying number on 
each page.  Do not use your name.  Each problem has equal weight.  A table of integrals can be 
used.  Some physical constants and mathematical definitions will be provided if needed.   
 

B1.  Consider a thin disk of radius R composed of two homogeneous halves connected along a 
diameter of the disk. If one half has density ߩ and the other has density 2ߩ, find the expression 
for the Lagrangian when the disk rolls without slipping along a horizontal surface in terms of 
system parameters. What are the equilibrium points of the system and the frequency of small 
oscillations around the stable equilibrium(s)? 

 

B2.  A long coaxial cable carries a uniform volume charge density 
on the inner cylinder (radius a), and a uniform surface charge density 
on the outer cylindrical shell (radius b).  This surface charge is 
negative and of just the right magnitude so that the cable as a whole is 
electrically neutral.  Assume cylindrical coordinates ( , , )s z   since 
is the volume charge density.  

a)  Use Gauss’s Law to determine the electric field in each of the three regions:   inside the inner 
cylinder ( )s a , between the cylinders ( )a s b  , outside the cable ( )s b . 

b)  Determine the electrostatic potential in each of the three regions listed above. 

c)  Determine the energy per unit length stored in the cable.  

 

B3.  Classical Mechanics: Beads in circular hole 

A large block of mass M is at rest on a horizontal surface. 
The block contains a circular hole of radius R that forms 
a frictionless track as shown in the picture. Two beads, 
each of mass m, are launched at the bottom of the track 
with initial speed v0 in opposite directions.  
Find the maximum value of v0 as a function of m, M and 
R such that the large block is not lifted upwards during 
the motion of the beads.   

b a 



 

B4.  Consider a pair of identical two-level quantum subsystems, each with energy splitting Δ. 
For subsystem ݅ ൌ 1,2 let ሼ|݊௜〉௜ሽ ൌ ሼ|0〉௜, |1〉௜ሽ denote a basis of unperturbed eigenstates with 
energies ε௡೔= ݊௜Δ. Define for each subsystem a “lowering” operator ܽ௜ = |0〉௜〈1|௜  that has the 
obvious action ܽ௜ |1〉௜ ൌ 	 |0〉௜ and ܽ௜ |0〉௜	= 0. 

a)  Construct the 2 ൈ 2 matrices representing ܽ௜, ܽ௜
ା, and ௜ܰ ൌ ܽ௜

ାܽ௜ in the representation of basis 
states |݊௜〉௜ for the ݅-th subsystem. Here, ܽ௜

ା is the adjoint of ܽ௜. 

b)  Suppose this pair of two-level systems interact with each other, with a total Hamiltonian 

ܪ ൌ ܽଵ
ାܽଵ∆ ൅	ܽଶ

ାܽଶ∆ ൅ ሺܽଵߛ	
ାܽଶ ൅	ܽଶ

ାܽଵሻ	 

in which ߛ is a positive coupling constant. Show that the total number ܰ ൌ ܰ₁ ൅ ܰ₂ of 
"excitations" in the system is a quantum mechanical constant of the motion under the evolution 
generated by ܪ. 

  c)  Determine the energy eigenvalues and eigenstates for this pair of interacting two-level 
systems. Express your answers in terms of two-particle basis states of the form |݊₁, ݊₂〉, in which 
݊௜	 ∈	{0,1} denotes the number of excitations in the ݅-th two-level system. 

 

 

B5. Flux density measuring mean solar electromagnetic radiation (solar irradiance) per unit area 
at Earth’s orbit is Φ଴ ൎ 1360ܹ/݉ଶ. A fraction (called Bond albedo) ߝ ൎ 0.306 of this flux is 
immediately reflected back to space. The remaining flux is distributed over the entire surface of 
the planet (via e.g. revolution of the Earth).  

(a) Assuming the Earth can be approximated as a black body, find its flux (energy emitted per 
unit of area, per unit of time) Φଵ and the equilibrium temperature ଵܶ. Stefan-Boltzmann constant 
is equal to 5.67 ߪ ൈ 10ି଼ܹ/݉ଶܭସ. 

(b) Now let us account for the greenhouse effects by the atmosphere. Assume a thin layer of 
greenhouse gases is (i) completely transparent to the incoming solar radiation, (ii) absorbs the 
entire 100% of the (blackbody) radiation coming from the Earth, and (iii) re-emits 50% of the 
absorbed energy back down to the Earth and the remaining 50% into space. Find the new value 
Φଶ of flux that reaches the surface in terms of Φଵ. 

(c) Based on Φଶ, find the new equilibrium temperature Tଶ, which now includes the greenhouse 
effect discussed in (b). Compare your result in (a). 

  

 



B6.  Nearly 200 years ago (1839), Gauss presented a proof that the sources of the magnetic field 
of the Earth had to be interior to its surface. The proof is an application of potential theory, 
therefore this problem can be thought of as an electrostatics problem. 

 

a) Imagine a thin spherical shell whose inner radius is the radius of the Earth and whose outer 
radius encompasses a layer of the atmosphere but not the ionosphere, therefore there are no 
current sources in the shell [the ionosphere introduces a very small perturbation anyway]. Show 
that in this layer we can write the magnetic field as B 

 
, and that the potential  satisfies 

the Laplace equation. 

 

Since the general solution for the potential is (r,,)  
l,m

(Almrl Blmr(l1) )Ylm(,) , the 
coefficients Alm and Blm can be determined from measurements of the horizontal and vertical 
components of the magnetic field B


on the surface of the Earth. The result of Gauss was that 

there were no Alm’s (84 points spaced at 30° of longitude along 7 small circles of fixed latitude). 

 

b) Write down the most general solution for the potential  outside a sphere of radius equal to 
the radius of the Earth, assuming the sources are inside the sphere. Show that the result is of the 
form found by Gauss. 

 


